- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Butterfield, Natalie O (1)
-
Chuss, David T (1)
-
Green, James A. (1)
-
Lang, Cornelia C. (1)
-
Longmore, Steven N (1)
-
Morris, Mark R. (1)
-
Pan, Xing (1)
-
Paré, Dylan M (1)
-
Paré, Dylan M. (1)
-
Pillai, Thushara (1)
-
Purcell, Cormac R. (1)
-
Qiu, Keping (1)
-
Sormani, Mattia C (1)
-
Tang, Yuping (1)
-
Tress, Robin G (1)
-
Zhang, Qizhou (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The recent Far-Infrared Polarimetric Large-Area Central Molecular Zone Exploration (FIREPLACE) survey with SOFIA has mapped plane-of-sky magnetic field orientations within the Central Molecular Zone (CMZ) of the Milky Way. Applying the Histogram of Relative Orientations analysis to the FIREPLACE data, we find that the relative orientation between magnetic fields and column density structures is random in low-density regions ( ) but becomes preferentially parallel in high-density regions (≳1023cm−2). This trend is in contrast with that of the nearby molecular clouds, where the relative orientation transitions from parallel to perpendicular with increasing column densities. However, the relative orientation varies between individual CMZ clouds. Comparisons with magnetohydrodynamic simulations specific to the CMZ conditions suggest that the observed parallel alignment is intrinsic, rather than artifacts caused by the projection effect. The origin of this parallel configuration may arise from the fact that most dense structures in the CMZ are not self-gravitating, as they are in supervirial states, except for the ministarburst region Sgr B2. These findings are consistent with the low star formation efficiency observed in the CMZ compared to that in the Galactic disk.more » « lessFree, publicly-accessible full text available September 24, 2026
-
Paré, Dylan M.; Purcell, Cormac R.; Lang, Cornelia C.; Morris, Mark R.; Green, James A. (, The Astrophysical Journal)Abstract The Radio Arc is a system of organized nonthermal filaments (NTFs) located within the Galactic center (GC) region of the Milky Way. Recent observations of the Radio Arc NTFs revealed a magnetic field that alternates between being parallel and rotated with respect to the orientation of the filaments. This pattern is in stark contrast to the predominantly parallel magnetic field orientations observed in other GC NTFs. To help elucidate the origin of this pattern, we analyze spectro-polarimetric data of the Radio Arc NTFs using an Australian Telescope Compact Array data set covering the continuous frequency range from ∼4 to 11 GHz at a spectral resolution of 2 MHz. We fit depolarization models to the spectral polarization data to characterize Faraday effects along the line of sight. We assess whether structures local to the Radio Arc NTFs may contribute to the unusual magnetic field orientation. External Faraday effects are identified as the most likely origin of the rotation observed for the Radio Arc NTFs; however, internal Faraday effects are also found to be likely in regions of parallel magnetic field. The increased likelihood of internal Faraday effects in parallel magnetic field regions may be attributed to the effects of structures local to the GC. One such structure could be the Radio Shell local to the Radio Arc NTFs. Future studies are needed to determine whether this alternating magnetic field pattern is present in other multi-stranded NTFs, or is a unique property resulting from the complex interstellar region local to the Radio Arc NTFs.more » « less
An official website of the United States government
